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An Algorithm for Solving a Certain Class 
of Diophantine Equations. I 

By David Lee Hilliker 

Abstract. A class of Diophantine equations is defined and an algorithm for solving each 
equation in this class is developed. The methods consist of techniques for the computation of 
an upper bound for the absolute value of each solution. The computability of these bounds is 
guaranteed. Typically, these bounds are well within the range of computer programming and 
so they constitute a practical method for computing all solutions to the Diophantine equation 
in question. As a first application, a bound for a cubic equation is computed. As a second 
application, a set of quartic equations is studied. Methods are developed for deriving various 
sets of conditions on the coefficients in such equations under which a bound exists and can be 
computed. 

1. Introduction. Traditionally, the term Diophantine equation usually refers to an 
equation, F(xl, X2,... .Xn) = 0, in n integer variables, xl, x2,. . . ,xn, where F is a 
polynomial, with integer coefficients, in n variables. Here, we use the term in a more 
general sense, where the equation is not required to be a polynomial equation. 

Diophantine equations can, and often do, have only finitely many solutions. A 
well-studied illustration of this, which encompasses a substantial portion of the 
theory of Diophantine equations, is furnished by Mordell's equation, y2 + k = X3. 

This Diophantine equation is known to have only finitely many solutions, in the case 
that k is a given nonzero integer. For example, the Diophantine equation y - 17 = 
X3 was completely solved by Nagell [12], in 1930, by employing algebraic number 
theory techniques. He calculated the solutions to be: 

x= -2, y= +3; x =-1, y= +4; x= 2, y= +5; 
x 4, y = +9; x 8, y= 23; x 43, y = 282; 

x= 52, y +375; and x 5234, y +378661. 

For more on Mordell's equation, see Baker [1], Hemer [2], Hilliker and Steiner [4], 
London and Finkelstein [7], and Mordell [10], [11]. (Note: R. Finkelstein is now 
known as R. Steiner.) 

If the Diophantine equation, F(x1, X2,... ,Xn) = 0, does have only finitely many 
solutions, then there is, in theory, a bound of the form I xi I < B for each solution x,, 
i= 1,2,... , n. Here, the constant B depends on the function F but not on the 
variables x,, x2,... .,x or the index i. If one had a procedure for actually computing 
B, for a given Diophantine equation in a certain class, and if the resulting computed 
value were of a reasonable order of magnitude, then such a procedure would 
constitute an algorithm for computing all solutions to the Diophantine equation. 

Received May 6, 1980; revised December 10, 1980 and June 15, 1981. 
1980 Mathematics Subject Classification. Primary I OB 10, l OB 15, 1 OB25. 
Key words and phrases. Computability, Diophantine equation. 

?l 982 American Mathematical Society 

0025-571 8/82/0000-0085/$05.25 

611 



612 DAVID LEE HILLIKER 

In Part I of this paper we shall define a certain class of Diophantine equations 
and develop an algorithm for solving each equation in this class. Our methods, 
which are not restricted to equations in two variables, consist of the computation of 
bounds. The resulting bounds will, in typical cases, lend themselves to computer 
programming, and, in fact, will oftert lend themselves to actual hand calculation. The 
methods are introduced in Section 2, Part I, of this paper. In Section 3, a specially 
chosen example, to wit one that involves only a minimal amount of ceremony, is 
given. In Section 6, we shall study a specially chosen quartic equation, one with 
unspecified coefficients. We shall illustrate there, techniques for deriving various sets 
of conditions on the coefficients of such equations under which a bound exists and 
can be computed. 

In Part II of this paper (Hilliker [3]) we shall turn to more realistic examples. 
There, as a further illustration of the techniques, we shall study the general quartic 
polynomial Diophantine equation with integer coefficients, in two variables. We 
shall prove there, under certain hypotheses, that the general quartic equation has 
only finitely many solutions and that a bound can be computed. This will amount to 
proving anew, by my methods, the quartic case of a theorem established by Runge 
[13], in 1887. This will involve extending the methods of Part I of this paper and 
coupling the extended methods with some numerical techniques in the classical 
theory of algebraic functions. See Section 9 of Part I of this paper for a precise 
statement of the hypotheses for the general quartic equation. 

For more on Runge's Theorem, see, in addition to Hilliker [3], and Runge [13], the 
works of Hilliker and Straus [5], [6], Maillet [8], [9], Mordell [11], Schinzel [14], and 
Skolem [15], [16]. 

It is not automatically the case that the general quartic equation possesses a 
bound. Indeed, the Diophantine equation y2 = (ax2 + bx + C)2, where a, b, and c 
are given integers, has infinitely many solutions, and hence, no possible bound. A 
less obvious special case of the general quartic equation that has infinitely many 
solutions would be given by 

(X2 ry2 -1)(ax2 + bxy + cy2 + dx + ey +f) = 0, 

where a, b, c, d, e, f, and r are given integers with r positive and not equal to a 
square. This is due to the fact that Pell's equation, x2 - iy2 1, would then have 
infinitely many solutions. These examples are both reducible. An irreducible quartic 
Diophantine equation can also have infinitely many solutions. An obvious example 
would bey4 - x3 = 0. 

We shall employ two functions of a real variable w. The first is the greatest integer 
function, denoted by [w], and defined to be the largest integer less than or equal to 
w. The second is the fractional part function, denoted by {w}, and defined by 

w = [w] + {w}, 

so that 0 < {w} < 1. 

2. The Algorithm. Suppose that n is a given positive integer, that, for each 
= 1, 2,. . . , n, Ii is a set of integers, and that x, is an integer variable in Ii. Let 

D = II X I2 X ... XIn be the Cartesian product consisting of all (xl, x2,...IXn). 
We wish to consider Diophantine equations of the form f(x,, x2,... ,xn) = k, where 
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k is a real constant and f is a real-valued function of n variables, defined for all 
(x, x2,... ,xn) in the domain D. We introduce an integer m in the range 1 < m < n 

to accommodate the situation of a Diophantine equation that requires one set of 
techniques to solve for the first m variables, x,, x2,.. . .,xm, and that requires a 
modified set of techniques to solve for the possible n - m remaining variables, 

Xm+? Xm+D.. . ,x n. For example, the Diophantine equation could have only finitely 

many solutions in the first m variables and infinitely many in each of the n - m 

remaining variables. 
We begin by defining a class A, after Diophantus, of Diophantine equations of the 

above type, where there are only finitely many solutions in the first m variables for 

all choices of the possible n - m remaining variables. We next define a subclass A1 

of A consisting of all such Diophantine equations where there are only finitely many 

solutions in the first m variables for all choices of the possible n - m remaining 
variables, and for all choices of the real constant k in any interval of finite length. 

We realize then that there is, in theory, a bound of the form I xi 1 < B(k), for each 

Diophantine equation in each of the above defined classes A and A1, for each i s m, 

where B depends on k and the function f, but not on the variables x1, x2,. . .,xn, or 

the index i. 
We also realize that there are Diophantine equations in A that are not in A1. An 

example of this would be I/x + l/y = k. For k= 2, this equation has only the 
solution (1, 1); but if k varies over the interval [1, 2], in the infinite sequence k = 2, 

3/2, 4/3, 5/4,..., there are infinitely many solutions (1, 1), (1, 2), (1, 3), (1, 4), ... 

Our objective will be to characterize the classes A and A1 in terms of the existence 

of a certain quantity, q = q(xl, X2,.... Xn), defined for all (x1, x2,. . . ,xn) in D. 

Then, based upon this characterization, we shall define another class A2, a subclass 
of A1, which will turn out to contain only Diophantine equations that possess a 

computable bound. By proceeding in this manner, we will arrive at the point of view 
that: the computation of the solutions to a Diophantine equation rests upon the 

computation of a certain function q = q(xl, X2,... ,xn) with certain specified proper- 
ties. We shall associate with q a second function w = (x1, x2,... ,xn), defined for 

all (xl, x2, ... ,xn) in D by 

@ f(Xl X2@ *.. *Xn)l 

{ q(xl, X2,. ..,Xn) 

We now state our algorithm in the form of three theorems. 

THEOREM 1. A given Diophantine equation is in the class A if and only if there is a 

real-valued function q of n variables, defined for all (xl, .... Xn) in D, with 

q(x1, X2,. . . ,xn) 7# 0 for all (XI, X2, ... ,Xn) in D, and that possesses the following 
three properties, for all solutions (x1, X2... Xn) in D to the Diophantine equation. 

First, it is required that 

(i) kq(x 1, X2,. ... ,xn) > O, 

if k 7# 0. Secondly, it is required that, for each i < m, 
(ii) lim I q(xI, x2,. ... , Xn) I= 00, 

uniformly in XI,X2...Xi_ Xi+D...Xn as IxiI approaches infinity. Finally, it is 
required that w satisfy, for each i < m, 
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(iii) co I q(x I, X 2 ..*. 1Xn)J7 k l, 
if I x, I> xo, for some constant xo, independent of X IX2,... Xn and i. 

THEOREM 2. A given Diophantine equation is in the class A1 if and only if there is 
such a function q which satisfies, for all solutions (x1 X2,... ,Xn) in D to the 
Diophantine equation, the condition (i), but where (ii) and (iii) are replaced by the 
stronger set of conditions that, for each i < m, 

(iv) limo I q(x1 Ix2,... xn)I= 
uniformly in xl, X2, ...,xiI Xi_ x+I,. . . Xn as I xl I approaches infinity. 

We note that the conditons (i), (ii), (iii), and (iv) are required to hold only for 
solutions (xl, x2,... , xn) in D to the Diophantine equation. Of course, the Di- 
ophantine equation, or even the set Ii, could, for one or more values of i, preclude 

I xi I from becoming large. In a situation of this type the conditions (ii), (iii), and (iv) 
are vacuously satisfied for such values of i. 

We now define the subclass A 2 of A1 by replacing the set of m limit conditions (iv) 
by a stronger set of conditions. The class Al2 is defined to be the set of those 
Diophantine equations in A1 that are such that, for each i < m, there is a given 
real-valued function Q = Q,i(w), of a real variable w, defined everywhere, that is 
continuous, that is strictly increasing as w increases, whose inverse is given, and that 
possesses the following two properties. First, it is required that 

(v) lim 2, (w) = oo, 
as w approaches infinity. Secondly, it is required that 

(vi) Qj(I xi 1) < co I q(xI, x2,.. .,xn) I I 
for all solutions (xl, x2,... , xn ) in D to the Diophantine equation. 

THEOREM 3. For each Diophantine equation in the class Al2, the bound I x, 1< B(k), 
for 1 < i < m, is computable. 

Proofs. Let us assume that there is such a function q that satisfies (i), (ii), and (iii). 
Then there is a constant a so that, by (i) and (ii), for each i < m, and for all solutions 
(xl, x2,... . ,xn) in D to the Diophantine equation, one has 

_< f(XI X2, 1Xn) k 
IkI <1, 

q( X,I X2, -, *SXn ) |q( x,l, x 2 ,** Xn) ) 

if I x, I > a. For such values of x, we then have 

wlq(x,, X2, . * * IXJ)| k l, 
and so, by (iii), I xi 1? xo. The Diophantine equation is realized to be in the class A. 

Now, if the set of conditions (i), (ii), and (iii) were to fail to hold, then for any 
choice of q satisfying (i) and (ii), one would have, for any given constant c > 0, a 
solution (xl, .. . ,xn) in D to the Diophantine equation, and a value of i < m, for 
which X I q(xI, X2,. . .Xn) k I and I x, I> c, so that the Diophantine equation 
could not be in A. 

Let us now assume that there is such a function q that satisfies (i) and (iv). Then, 
since X can be given, for all (xl, x2,.. . ,x) in D, by 

f(xl, x2,. ._..__ _ _ [ f(Xl, X2, *.*,X ) 1 
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we infer, if x1, x2,. .. ,x n satisfy the Diophantine equation, that cq(xI, x2,. ..,xn) 
? k if k > 0 and that wq(x1, X2,. . ..Xn) , k if k < 0, since, by (i), k and q have the 
same sign. Consequently, in either case one has an inequality, co I q(x, X2.... Xn). 

s k I, which also holds if k = 0. It now follows from our limit hypotheses (iv) that 
there are only finitely many solutions xl, x2,... ., m for all choices for 
Xm+?i Xm+2,. - - xn and for all choices of k in any interval of finite length, so that the 
Diophantine equation is in A 1. 

Now, let it be assumed that the Diophantine equation is in A 1. Then, for any given 
positive constant c, the Diophantine inequality If(xl, x2,... , xn) 1< c has only 
finitely many solutions xl, x2,. . . ,xm for all values of xm+1, xm+2, ... .,xn. Let x0 be 
the maximum of the absolute values of these solutions, if there are any, and let 
x0 = 0, otherwise. Then it is the case that If(xl, x2,. . . ,xn) I c if, for any i < m, 
I xi 1> x0. Letqbe definedbyq(x,, x2. . .,xn) = 2sign(k) if(x1, x2,. .., xn) , where 
sign(k) = 1 if k > 0 and sign(k) = -1 if k < 0, if (xl, x2,... .,xn) in D is such that 
f(xl, x2,.. . ,xn) #0, and let q(xI, x2,. . 9,xn) = sign(k) for the possible finite num- 
ber of remaining values for (xl, .... ,xn) in D. We observe first that 
kq(x,, x2,. . ,xn) > 0 if k =# 0, for all choices of (xl, X2,... ,xn) in D, and then that 
o q(x,, X2, ... ,xn) IIf(x1, X2. ... xn) I approaches infinity, uniformly in xl, 

x2,. . . ,xll, x1+1,. ... .,xn, as I xl I approaches infinity, for each i < m, so that (i) and 
(iv) hold. 

Suppose now that there is such a function Q with the properties (v) and (vi). Then, 
one has Qi(I xi 1) < co I q(x1, X2,. . . ,Xn) I<I k I, if (xl, X2,. . . ,Xn) in D satisfies the 
Diophantine equation, and if i < m. That is to say, all solutions xi in I, of our 
Diophantine equation lie among the solutions to the Diophantine inequality i1(I xl 1) 
< I k I. If I k I were to fail to be in the range of Q, then, since Q is continuous and 
approaches infinity, it would be the case that Qi(I xl 1) > I k I . It is then realized that 
I k I is in the range of Q, and, hence, in the domain of the inverse function Q-i . It 
now follows from our Diophantine inequality, since Q is strictly increasing, that 
xl1 I< Qi (I k 1). Indeed, if one had I xl I > Q2 (I k 1), then one would have 

Ql( xl1) Q(Qi-l k 1) lk . 

We now focus attention back on the Diophantine equation to draw the conclusion 
that, for all i with 1 < i < m, it is the case that x1 < B(k), where 

B(k) = max(Q- '(I k |), Q2- '(I k 9) 0 Qm 1( k ) 

Remark. The initial problem is usually to solve a Diophantine equation 
f(xl, X22... ,xn) = k as xl, x2,... .,xn vary over all integers. On occasion, the con- 
struction of our function Q depends upon the variables being positive. Since our 
bound will certainly hold for xi = 0, we can replace xi in the original Diophantine 
equation by - xl, to reduce the problem to that of computing a bound for a positive 
integer variable xi for two Diophantine equations. Continuing in this manner, we see 
that the original problem is equivalent to that of computing a bound for a set 2n 
Diophantine equations in positive integer variables. These derived Diophantine 
equations often satisfy the hypotheses of our algorithm if the original one does for 
positive values of the variables. In this situation, we let each I, be the set of all 
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positive integers and compute a bound for this set of 2' equations and, hence, a 
bound for the original Diophantine equation f(X X21 .... Xn) = k for all integer 
values of x1, x2,.. 

On other occasions the construction of 2 depends on each variable being in the 
range I xi J>- x0 for a given constant x0. In this situation, we would let each Ii be the 
set of all integers with absolute value at least as large as x0. We then apply the 
methods of our algorithm to compute a bound for f(XI X21 .... Xn) = k as 

(xI, x2,... ,xn) varies over D. Then, by letting 

B(k) = max(S2- '(I k |), 02- '(I k I),- Sun '(I k 1), xo), 

we obtain a bound I xj1< B(k) for all integer solutions xl, x..2.. ,xn to 

f(XI, X2,... *Xn) = k. 

3. A Cubic Polynomial Diophantine Equation. As a first illustration of the ideas, let 
us solve the equation 

(1) xy2 +y + k = 2x3. 

We assert that if k 0 O, then the solutions are: x = O, y 0 O; x 1, y 1; and 
x = + 1, y = 2. If k # 0, then all solutions satisfy 

(2) jxj< 10jkj . 

In particular, the Diophantine equation (1) has only finitely many solutions for a 
specified integer k. 

The case k = 0 can be dispensed with at once. If x # 0, then x divides y so that 
y = xz. Thus we have x3z2 + xz = 2x3, so that x2 divides z. We then have z - wx2 
and w2x7 + wx3 = 2x3, so that w divides 2. That is to say, y is given by y= +x3, 

?2x3. In the first case we observe that X7 ? x3 = 2x3, and hence that x = + 1 and 
y = 1. In the second case one obtains 4x + 2 = 2x from which we infer that 
x = 4 1 andy - +2. 

In order to simplify the proof we shall reduce the problem of solving the equation 
(1) with k # 0 to that of solving an equation with x and y both positive. 

If x -0, then the bound (2) certainly holds. If y = 0, then the equation (1) has a 

solution only if k is twice a cube and then x -- k/2 so that the bound (2) is 
realized. If x < 0 andy > 0, then the equation (1) is equivalent to xy2 -y - k = 2x3 

with x, y > 0. If x > 0 and y < 0, then our equation (1) is equivalent to xy2 -y + k 
= 2x3 with x, y > 0. If x < 0 and y < 0, then the equation (1) is equivalent to 
xy2 + y - k = 2x3 where x, y > 0. 

It is then realized that our original Diophantine equation (1) with k =# 0 is 
equivalent to 

(3) xy2 + ay + k = 2x3 

where k 7# 0, a = 1 and x, y > 0. We shall deduce the bound (2) for the equation 
(3). 

4. The Case k > 0. From the equation (3) we get that 

a 1 k 
?j --+2X2. X 

4X2 X 
2 
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If the minus sign did occur, then one would have 

2x 4x 2 X 

and so 2x3 < k. Hencey is given by 

(4) a2x + -k4 2 X 

if x satisfies 

(5) x > . 

Since 

4I k 2x2 < A2x + 1 + a 

it follows that the inequality y < Va x + 1 always holds. Also we have y > VA7x - 1 
if the inequality 

1 _ k + 2x2 > Ax-1_+ a 

4x X 2x 

is realized. If the right-hand side is positive, that is, if x > 2 then, by squaring, we 
get that this inequality is equivalent to 

2 2x2- (I + F/a)x + a> k. 

If a -1, this inequality holds if x > 3 and x > /k/2V . If a = 1, it holds if 

x > rk/VI . We have shown thaty > VA x - 1 if x satisfies x > 3 and 

(6) x k > . 

Let q(x, y) = x. Then X is given by 

{2x3-xY2-ay { -a) 

If a = 1, then co {-FV + e}, where I 1-< I/x. Thus X 2 - V2 + -, if E satis- 
fies 0 < 2 - V2 + E < 1. Let us require a stronger condition on c, namely that 

0.1 < 2 - F + E < 1. 

Then we have w bounded away from zero: w > 0.1. This restriction on E will hold if 
-0.48 < - < 0.4, that is, if I - I < 0.4, or, if x > 3. 

If a = -1, then w {V 7 + e}, where I E l/x. Thus we infer that w = 
- 1 + c, if - satisfies 0 s - 1 + - < 1. It will be the case that w > 0.1 if - is 

required to satisfy the stronger condition that 

0.1 < /I - 1 + c < 1. 

This restriction will be satisfied if c E< 0.3, or, if 

(7) x 4. 
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It is then concluded that w > 0.1 if the inequalities (5), (6), and (7) all hold. 
Consequently, since 

wjql 
k k 

I q( I [II] ) 

always holds, the bound 

(8) x < 10k 

is realized. But, if any of the inequalities (5), (6), or (7) failed to hold, then the bound 
(8) certainly would be satisfied. We then draw the conclusion that the bound (8) 
holds for the equation (3) for all x in the case that k > 0. 

5. The Case k < 0. Let us now assume that k < 0 in the equation (3). Then y is 
given by (4), since the inequality (5) now automatically holds. This time it is 
concluded that y < A2 x + 1 if x satisfies 

24x2 + (l + 2a)x + a >kI k 

This will occur if 

(9) x> [T . 

The inequalityy > a2 x - 1 is now automatically satisfied. 
This time we let q(x, y) = -x. Then one has 

- {ay/x}. 

If a = 1, then co {V + e} where I 1< I/x. Consequently, it is concluded that 
=2 - 1 + e if E satisfies 0 - 2 -1 + E < 1. We shall require - to satisfy the 

stronger condition that 

0.1< C2 - I + < 1, 

so that, then, w > 0.1. Our condition on E is satisfied if j j I< 0.3, that is, if 

(10) x>4. 

If a -1, then c,{-- 12 + e}, where I ? I< I/x. Let us assume that 0.1 < 

2 - 12 + e < 1, so that X 2 - 12 + - and that w > 0.1. This will happen if 

I I< 0.4, or, if x > 3. 
We have shown that the bound x < 10 I k I holds for the equation (3) if the 

inequalities (9) and (10) are satisfied. If either of the inequalities (9) or (10) should 
fail to hold, then certainly this bound is obtained. Let it then be realized that all 
solutions to our original Diophantine equation (1) with k # 0 lie in the range 

IxI< 101k!. 

6. A Quartic Polynomial Diophantine Equation. As a second illustration of the 
techniques, we shall study the equation 

(a1x2 + a2x + a3)y2 + (a4x3 + a5x2 + a6x + a7)y 

(11) +a x4 + a9x3 + alx2 + alx = k. 
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This furnishes an interesting illustration of our methods, because it is necessary to 
have specified conditions on the coefficients in order for a bound to exist, since there 
could be infinitely many solutions. 

THEOREM 4. Let ai, for 1 < i < 1 1, and k be given integers with k not equal to zero. 
Assume that a4 - 4a a8 is not equal to a square and that a2a6 - aa2aa - 

a,a3a4 + a2a4 # 0. Then the Diophantine equation (11) has only finitely many solu- 
tions and an upper bound for I x I can be computed. In fact, there is a bound of the form 

I x I < y j1k, where y is a computable constant that depends only on the al's. 

7. Proof of Theorem 4. We begin by establishing the existence of a computable 
bound I x I B(k). If x = 0, such a bound is certainly realized. If x < 0, we can 
replace x by -x to reduce the problem to that of computing a bound for a positive 
integer variable x for two Diophantine equations. The derived Diophantine equation 
satisfies the hypotheses of Theorem 4 if the original one does. This is due to the fact 
that k and a2 - 4a a8 are invariant under such a substitution; whereas, a2a6 - 

aa2aa - aa3a4 + a2a4 is transformed into its negative. It is therefore sufficient to 
establish the theorem under the assumption that x > 0. 

By viewing y as a function of a real variable x, given by Eq. (11), and by 
employing the binomial series, we realize that for all sufficiently large values of x, it 
is the case that y has two expansions of the form 

(12) y = aox + a, + x + 2 + 
x x2 

where ao takes on the values 

(13) a = -a4? a- - 4a1a8 
2a1 

We shall assume that 

(14) x >x 

where xo is a computable real constant, large enough so that the Laurent expansions 
(12) hold for all x in the range of (14), and, at the same time, large enough so that all 
the conditions to follow also hold. We write the Laurent expansions (12) as 

(15) y = aox + e1, 

where 

El a,+ 2+ 3+ . 

x x 2+ 

is estimated from 

(16) 1 el 1< cl. 

Here, cl and the c 's to follow, all represent computable positive constants. If it is the 
case that a2-4aa8 < 0, then by (13) and (16), we realize that there is no real, and 
hence no integral, value of y given by (15), for x in the range of (14). We thus assume 
that a 2-4aa8 > 0. 
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We shall have occasion here to choose q(x, y) in two ways, q,(x, y) and q2(x, y). 
Let xl and W2 be, respectively, the corresponding values of w. We let q,(x, y) 
= sign(k)x2 and q2(x, y) = sign(k)x3. Then, from the Diophantine equation (1 1), 
one has 

(17) XI= {sign(k)( x + x2 + + + a1) 

2 

2 2 

a1y2 a2y 25 a6y 
W2= sign(k) X + 2 + X + 3 + 2 

(18) 

+al0 a7y+ a,,~ 
X x3 x2!1 

The y2/x term in wx can be eliminated as follows. We write, by using (18), 

W2 x ~~~ 2 2 
a1=sg() y + a2y+ a5y a3y + a6y 

X(9 X3 + x + A 

where A is an integer given by 

A [sign(k)( X + X2F + X + 3 X2 

+ al0 + ay+ a,, 
X x3 x2!J 

We first substitute the value of the quantity y2/x, obtained from formula (19), into 
the expression (17) for wx, and then we eliminatey in the resulting wx, by using (15), 
to compute that xl has the form 

(20) X, = sign(k)( - a ) a2 (a a2a5 a ) f a2A } (20) 21~~ a a6-a 0 

Here, E2 is a quantity of the type 

(21) E2 =a + E3 
a, 

where e3 is a quantity that, in view of (16), can be estimated by 

(22) I E3 1< C2/X. 

Let us assume that 

(23) W2 < 1/X. 

Then, from (22), (23), and (21), one has an estimation 

(24) j E2 I< c3/x. 
Let us now define a function Q0 of x as follows: 

(25) = asign(k) a 2 
a2) + a 2a' + 2a' 1sgnk 3t a3 0 ~6 a1 J0 la,J 
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Then, from (20) and (25), w1 is evaluated as 

(26) X= l 20 + e2E 

provided e2 lies in the range given by 0 s Qi0 + e2 < 1. We shall require the stronger 
inequality 

(27) - Q20/2 < E2 < 1 - 20 

to be valid. This will occur if 

(28) IE21 < min( -20 ,1-Q0 21 
It follows from (26) and (27) that w l has a lower bound given by 

(29) x > Qo2/2. 

We shall argue that Q0, as a function of an integer variable x, has a positive 
minimum. First, we observe, in view of (13), that 

1a 2\( a a 

(a3 
2 a2 

+ (a6 
a 
o 

(30) = ? 3 (a2-,a6a2a5 - aa3a4 + a2a4) /a4 -4a1a8 
2a2 

+ 
1 

(-2a 2a3a8 -a2a4a6 + 2aa 2a8 + a a2a4a5 + a1a3a - a2a 2). 
2al 

Secondly, we note that the quantity (30) is irrational. Now, since the function 
{a2 A/al} only takes on the possible values 

__ 0 2 a,- 

{al a,l' al ' al 

it follows from our definition (25) of Q0 that 

(31) min 20 > 0. 

The same argument shows that 

(32) min(I - Q20) > 0. 

In order to have the desired lower bound (29) for wx, the inequality (28) must be 
realized. But from (31), (32), and (24), we infer that the inequality (28) will be valid 
if 

x3 min (min 
20 , min( l- Q0)) xmin2' 0J 

It is then realized that for x in the range of (14), the inequality (28) will occur. 
In the notation of our algorithm, we let I, be the set of all integers that are at least 

as large as x-0; we let I2 be the set of all integers; we let m = 1; and we define 
q(x, y) and Q as follows. If 2 > l/x, let q(x, y) = q2(x, y) = sign(k)x3 and let 
i21(x) = x2. Otherwise, the inequality (23) holds and we then define q(x, y) = 

q,(x, y) = sign(k)x2 and Q (x) = (min i0)x2/2. If x is in I,, so that the inequality 
(14) holds, then, in view of (29) and (31), we see that all the hypotheses of our 
algorithm are satisfied. It is then realized that there is a computable bound for the 
Diophantine equation (11), for all values of x in Il. By taking the larger of this 
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bound and x0, we realize that there is a computable bound for all positive integer 
solutions x, and hence, as noted earlier, there is a computable bound I x j s B(k) for 
all integer solutions x to the Diophantine equation (11), subject to the restrictions of 
Theorem 4. 

The essential idea in modifying the above proof to one that yields a bound of the 

form I x I < y j k j is to make the observation that if it is assumed that x > k jk, 
then the quantities x0 and cl can be computed to be independent of k. The details of 
the calculation of y are left to the reader. 

8. The Class Al. In order to acquire some insight into the nature of the class A, we 
shall establish the following. 

PROPOSITION. The class A , includes as a subclass the class of all Diophantine 
equations included in Thue's theorem. 

Proof. We are considering Diophantine equations of the type f(x, y) = k, with k a 
given nonzero integer and 

f(x, y) = a0xn + a xn-ly + a2Xn-2y2 + + n 

an irreducible binary form with given integer coefficients and with a given degree 
n > 3. In the notation of our algorithm, we let Ii, for i = 1,2, be the set of all 
integers, and we choose m in the optimal manner, m = 2. One can write 

f(x, y) =anx nI ( x ai) 

where a,, a2, ... a are the roots of the irreducible equation 

anzn+ an-1zn' + * +aO = O, 

and where an =# 0. Let y = min j ai - aj , where the minimum is taken under all i 
and j with i =# j. Then, it follows from the irreducibility condition that y > 0. If it 
were the case that, for all i, I y/x - ai j> y/2, then it would be the case that 

lf(x, y) Ila 

I 

y) nX1n > iki 

if 

lxi >. 

This would contradict the Diophantine equation. It is then the case that one of the 
a 's, which we assume to be a1, has the property that Iy/x - a, 1< y/2 for all 
values of x in the above range. We letj # 1 and write 

Y<Iaj -a,= (xa,) - (-aJ) ? X-a, + x-ail 

It is then realized that for all] j 1, Iy/x - aj j> y/2. We define q(x, y) = sign(k) 
if x = 0 and q(x, y) = sign(k) j x In if x # 0. It is then realized that kq(x, y) > 0 
for all integers x and y. It is also realized that to = {j k 1/1 x l} if x =# 0. Let us 
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assume that x > k . Then, w is given by 

l Ix In lanl | -aX 1 n 
- 

YXa,| xr a x 1 i=2 X 

If we further assume that I x > 2 k 1/1 an ,/Y, then we have 

X >|anI |- - a,t 2 

Now, let E > 0. Then, by the Thue-Siegel-Roth Theorem, there is a positive constant 
c = C(E) so that one has 

y _C 

lX a, > 
X 12+"- 

since a, is irrational. It is now concluded that 

wlq(x, y)I > clan |y 

n 

Y) XIn2| 

and hence that lim w I q(x, y) o= c as x , or equivalently, I y , approaches infin- 
ity, if we choose E < 1. 

It should be noted that the constant c of the Thue-Siegel-Roth Theorem is still, at 
this date, incomputable. 

The reader may be interested in showing that the nonpolynomial Diophantine 
equation xy z3 + y + xz2[log x 1] + k = 2x3z5 in three variables x, y, z, with 
x, z #0 O, is in the class A1, and that an upper bound for Ix, x y, and I z 1 can be 
computed, in analogy with the cubic equation of Section 3. 

9. Concluding Remarks. The quartic equation of Section 6 furnishes us with a good 
first illustration of my methods, because the choices of q(x, y), the computation of 
the Laurent series for y, and the analysis of w, are all relatively simple. 

In a more realistic example, the function q(x, y) is chosen in a variety of ways, 
according to a number of different cases, the expansions for y would be those of 
Puiseux series, and the analysis of w would be more intricate. This analysis would 
involve not only the constant term in w, but also terms such as those of the form 
1/x, 1/x2, and so on. To make matters even worse, there could occur such unwieldy 
terms as x, x 2, and so on, multiplied by irrational coefficients, or terms such as Rx. 
These terms must be eliminated. This is done by a process that I shall call analytic 
elimination, which involves manipulation of the Puiseux series expansions of y. We 
were able to avoid this phenomenon in our illustration of the quartic equation of 
Section 6, by eliminating, at the outset, the term y2/x. 

As I mentioned earlier, I have extended the methods introduced in Part I of this 
paper and I have applied these resulting methods to the general quartic equation, 
under certain hypotheses. These hypotheses can be conveniently formulated in terms 
of a quantity that we shall call the leading part of a polynomial. Let 

d, d2 

F(x, y) = x2 a1x'yj 
i=O j=O 
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be a polynomial in x and y, of degree dl and d2 in x and y, respectively. Let X be any 
positive real number. We define the X-leading part of F(x, y), denoted by FX(x, y), 
to be the polynomial consisting of the sum of all nonzero terms aijx y' of F(x, y) 
for which i + Xj is maximal, for that fixed value of X. We define the leading part of 
F(x, y), denoted by F(X, Y), to be the polynomial consisting of the sum of all such 
terms, as X varies. A related notion is that of the leading form of F(x, y), which is the 
polynomial consisting of the sum of all terms of F(x, y) of maximal degree. It is, in 
the present notation, F,(x, y). 

For example, if F(x, y) = y4 +y3 - 2X2y2 + xy + 3x3 + x - 5, then Fx(x, y) 
y4, y4 -2x2y2 -2x2y2 -2X2Y2 + 3X3, or 3x3, according as X > 1, X = 1, 

{ <XA < 1, AX=42, or X < , respectively. Thus, F(X,Y)=Y4-2X2Y2 + 3X3. If 
F(x, y) = y4 + XY2 - 2X3 - 18, then Fx(x, y) = Y4, Y4 - 2X3, or -2X3, according 
as X>4, A = -, or X < 3, respectively. In this case F(x, y) = F3/4(X, Y) = 

Y4- 2X3. 

The result for the general quartic equation, which is established by employing my 
methods, in Part II of this paper (Hilliker [3]), can be formulated as follows: If the 
general quartic polynomial Diophantine equation, in two variables, with integer coeffi- 
cients, is irreducible, and if, in addition, either the leading part is not a constant 
multiple of a power of an irreducible polynomial, or, the leading part is not equal to any 
X 0-leading part, then there are only finitely many solutions and an upper bound for the 
absolute value of each solution can be computed. 

By the leading part of a polynomial equation we mean, after it is put into the form 
F(x, y) = 0, the leading part of the polynomial F(x, y). When we say that a 
polynomial equation, with integer coefficients, is irreducible, we mean, after it is put 
into the form F(x, y) = 0, that F(x, y) is irreducible. That is to say, we mean that 
F(x, y) cannot be expressed as the product of two nonconstant polynomials with 
rational coefficients. 

For example, let us consider the Diophantine equation 

y4 + y3 - 2X2y2 + xy + 3X3 +x -5 = 0. 

We note that this equation is irreducible. Indeed, any possible factorization would 
result from extending the factorization y2(y2 - 2x2) of the leading form: 

y4 + y3 - 2X2y2 + xy + 3X3 + x -5 

= (y2 + a1x + a2y + a3)(y2 - 2X2 + a4x + a5y + a6). 

If we equate the coefficients on both sides of this equation, we obtain a system of 
equations in the a 's that has no solution. This Diophantine equation is then covered 
by the hypotheses of the above theorem, and hence it has only finitely many 
solutions. An example of an irreducible Diophantine equation that is not covered by 
these hypotheses would bey4 + Xy2 - 2X3 - 18 = 0. 

We now formulate a version of Runge's result for an equation of an arbitrary 
degree that is equivalent to that of his paper of 1887, in exact analogy with the above 
theorem for the general quartic equation. Let F(x, y) be a polynomial, in two 
variables x and y, with integer coefficients, that is irreducible. We say that such a 
polynomial satisfies Runge's Condition unless, for some A0, F(x, y) = FXO(x, y) is a 
constant multiple of a power of an irreducible polynomial. Runge's Theorem is 
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stated as follows: If F(x, y) satisfies Runge's Condition, then the Diophantine 
equation F(x, y) = 0 has only finitely many solutions and an upper bound for I x I and 
I y I can be computed. 

Runge did not compute a bound for I x I and I y I in his paper of 1887. E. G. Straus 
and I (Hilliker and Straus [6]) have made such a computation. Let h be the height of 
F(x, y), that is to say, the maximum of the absolute values of the coefficients of 
F(x, y). Let d be the maximum of the degrees d, and d2 in x and y, respectively. 
Then the following bound, involving only h and d, is realized, for those Diophantine 
equations that satisfy Runge's Condition: 

)d2d3 max( x I ,lYI) < (8dh) 

A special case of Runge's Theorem appears in Mordell's book [11] where stronger 
hypotheses are stated (Chapter 28, Theorem 1). 

We close Part I of this paper by making the observation that what we gave to our 
algorithm in Section 2 was a proof. It is interesting to wonder if one can somehow 
systematically derive such algorithms. Specifically, I pose the following problem: To 
state a master algorithm for systematically deriving classes of Diophantine equations, 
and for systematically deriving for each such class an algorithm for solving each 
Diophantine equation in that particular class. Briefly, I pose the problem in these 
words: To state an algorithm for deriving algorithms for solving Diophantine equations. 
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